National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Influence of the Application of Lignite on the Distribution of Organic Carbon in Soil
Širůček, David ; Záhora, Jaroslav (referee) ; Kalina, Michal (advisor)
This diploma thesis is focused on optimization of sequential chemical fractionation method to humeomics in order to be useful for determination of organic matter content and distribution and also organic elements in soil. Subsequently, the optimized method is used to assess the efect of lignite application as soil support on these soil characteristics. For these purposes, there were three source matrices of organic matter (lignite, soil and annual soil extraction after lignite application) fractionated by sequential chemical analysis. In parallel, these samples were also fractionated by classic alkaline extraction to obtain the so-called extractable fraction of organic matter (NOM). Individual fractions from sequential chemical fractionation as well as NOM samples were characterized by methods of elemental analysis (determination of organic elements), thermogravimetry (contents of ash, organic matter and moisture) and FTIR spektrometry (structural analysis). The results obtained from a large range of data from all humeomics fractions and NOM fractions showed that the method of sequential chemical fractionation gives higher yields of organic matter compared to classic alkaline extraction. Another indisputable advantage is the fact that the obtained fractions divided according to solubility and strenght of binding to soil inorganics can be better characterized by physical-chemical methods, which provides more detailed information about soil organic matter. The results of the work also show that in order for lignite as a support substance to significantly affect soil properties, a longer time, multiple sampling and repetition of individual fractionations would be needed.
Influence of the Application of Lignite on the Distribution of Organic Carbon in Soil
Širůček, David ; Záhora, Jaroslav (referee) ; Kalina, Michal (advisor)
This diploma thesis is focused on optimization of sequential chemical fractionation method to humeomics in order to be useful for determination of organic matter content and distribution and also organic elements in soil. Subsequently, the optimized method is used to assess the efect of lignite application as soil support on these soil characteristics. For these purposes, there were three source matrices of organic matter (lignite, soil and annual soil extraction after lignite application) fractionated by sequential chemical analysis. In parallel, these samples were also fractionated by classic alkaline extraction to obtain the so-called extractable fraction of organic matter (NOM). Individual fractions from sequential chemical fractionation as well as NOM samples were characterized by methods of elemental analysis (determination of organic elements), thermogravimetry (contents of ash, organic matter and moisture) and FTIR spektrometry (structural analysis). The results obtained from a large range of data from all humeomics fractions and NOM fractions showed that the method of sequential chemical fractionation gives higher yields of organic matter compared to classic alkaline extraction. Another indisputable advantage is the fact that the obtained fractions divided according to solubility and strenght of binding to soil inorganics can be better characterized by physical-chemical methods, which provides more detailed information about soil organic matter. The results of the work also show that in order for lignite as a support substance to significantly affect soil properties, a longer time, multiple sampling and repetition of individual fractionations would be needed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.